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Abstract: An approach is presented for the interpretation of heteronuclear NMR spin relaxation data in mobile
protein parts in terms of reorientational eigenmode dynamics. The method is based on the covariance matrix
of the spatial functions of the nuclear spin interactions that cause relaxation expressed as spherical harmonics
of rank 2. The approach was applied to characterize the dynamics of a loop region of ubiquitin. The covariance
matrix was determined from a conformational ensemble genergtedsbnsmolecular dynamics simulation.

It was found that the time correlation functions of the dominant eigenmodes decay in good approximation
with a single correlation time. From the reorientational eigenmodes, their eigenvalues, and correlation times,
NMR relaxation data were calculated in accordance with BtostangsnessRedfield relaxation theory and
directly compared with experiment&N relaxation parameters. Using a fitting procedure, agreement between
calculated and experimental data was improved significantly by adjusting eigenvalues and correlation times of
the dominant modes. The presented procedure provides detailed information on correlated reorientational
dynamics of flexible parts in globular proteins. The covariance matrix was linked to the covariance matrix of
backbone dihedral angle fluctuations, allowing one to study the motional behavior of these degrees of freedom
on nano- and subnanosecond time scales.

. Introduction motional models® e results of such analyses can be directly
1. Introduct tional model$%11Th Its of such I be directl
) . . o N compared with relaxation parameters calculated from a MD
To perform their function, proteins often exhibit a significant ;1 1ation!2-18 More integrated combinations of MD and NMR
degree of flexibility and dynamics, which may occur on awide rg|axation use analytical motional models derived from the
range of time scales from femtoseconds to seconds. SinCeysiectory followed by fitting of the model parameters to
flexible parts of globular proteins, such as loop regions and side experimental dat# 2! the computation of NMR relaxation
chains, are often myolved in medlatmg specific protemotein properties from harmonic and quasiharmonic analy&e3°
and proteir-DNA interactions, detailed descriptions of the 5.4 the jumping-among-minima concépe?
dynamics of these parts and their changes upon establishment

of specific contacts should help to obtain a better understandingeré?])eﬁ't?gfﬁ (/i- ’\'>|/'J i?bgh eAn-]? g?égéd; 1*16}4}’14585-‘?1 g'gflisco“: P. C;
of biologically important molecular processes. Atoms in bio- (7) Kay, L. E.; Torchia, D. A.. Bax, ABiochemistry1989 28, 8972

molecules do not move independently, but rather in a collective gg79.
fashion. Therefore, a description that takes motional correlation  (8) Palmer, A. G.; Rance, M.; Wright, P. 5. Am. Chem. Sod 991

- : : 113 4371-4380.
effects into account is desirable. (9) Peng, J. W.: Wagner, @iochemistryL992 31, 8571-8586.

Much of what is known about rapid biomolecular dynamics  (10) Woessner, D. El. Chem. Phys1962 36, 1—4.
stems from nuclear magnetic resonance (NMR) spin relaxation (11) Daragan, V. A.; Mayo, K. HProg. NMR Spectrosd.997 32, 63—
datd2 and molecular dynamics (MD) computer §imulatiéns. (12) Levy, R. M.: Karplus, M.: Wolynes, P. G. Am. Chem. Sod981
The two methods are complementdrgpin relaxation experi- 103 5998-6011.
mentally monitors local reorientational motions of internuclear  (13) Palmer, A. G.; Case, D. Al. Am. Chem. S0d.992 114, 9059~
vectors and their correlation times while MD provides a most 9067.

. . . . . (14) Chandrasekhar, 1.; Clore, G. M.; Szabo, A.; Gronenborn, A. M.;
detailed theoretical view of protein dynamlcs. Brooks, B.J. Mol. Biol. 1992 226, 239-250.

Most commonly, heteronuclear spin relaxation data of pro-  (15) Kordel, J.; Teleman, QI. Am. Chem. S0d4.992 114, 4934-4936.

; ; ; hy_reci ; ; (16) Schmidt, J. M.; Bischweiler, R.; Ernst, R. R.; Dunbrack, R. L;
teins are interpreted on a residue-by-residue basis using theJoseph, D.: Karpius, Mi. Am. Chem. S04993 115, 8747-8756. Brunne.
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S0c.1993 115 4764-4768.
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Collective descriptions of purely reorientational intramolecu- mode amplitudes and correlation times are then adjusted to
lar motions have recently been develofieéf for a compre- improve agreement between the experimental and the computed
hensive and yet compact description of correlated dynamics thatrelaxation data. The method is applied in section 3 to study the
affect NMR spin relaxation parameters. They rely on the dynamics of a loop region of the N-termingthairpin of
covariance matrices of internuclear vector fluctuations estimatedubiquitin that exhibits increased flexibility.
from MD simulations. The methods were used to address
contributions of purely reorientational motions of-# and 2. Theory and Methods
C—H bonds to the conformational entropy of folded and partially  General. we consider a molecular dynamics trajectory of a protein
folded protein states in the presence of motional correlafibffs.  of total lengthT consisting ofN conformations (snapshots) sampled

Nuclear spin relaxation parameters, suciad,, and NOE with a time incrementt. We are interested in dipolar spin-spin
of 15N and!3C spins, are determined by the fluctuations of the interactions, such @8N—'H and'*C—H interactions or any other rank
angular parts of the lattice functions of the spin-relaxation-active 2 interaction, determined by the orientations of their principal dkes.
interactions, in particular the magnetic dipoelgipole interaction A covariance matrix is constructed from the trajectory using the
to directly bonded protons and the chemical shielding anisotropy following procedure._Flrs_t, the six overaI_I motional degrees _of freedom
(CSA) interactior?” These lattice functions are commonly are removed by reorienting and translating each conformation by using

represented in terms of spherical harmonics of rank(6,¢) a least-squares superposition of atomic coordinates with respect to a
P P %) reference frame, which is for example the conformation at “half-time”

wheref,¢ are the polar angles describing the orientation of an \ay2. For each conformation, sampled at titehe principal axis
mternuclgar vector in a molecule-flxed frafi¢a non-axially- directionsQ;(t) = (6;(t),¢i(t)), j = 1, ...,n, of then interactions define
symmetric CSA interaction can be represented as the sum ofthe H-dimensional complex column vector:

two orthogonal axially symmetric interacticii Since relax-

ation theory by Bloch, Wangsness, and Redf&ffis a second- IY()O=

order perturbation theory, spatial aspects of relaxation properties

are completely determined by variance and covariance properties Y2240, Yz, (22(0), Yool 2(0): Yar(24(0), Yoo 100, -

of the Yau(0,¢) lattice functionstt“2 Yoo R4(1), Yo -1(R4(0), Yoo @e(0), Yar(@:(0), YA ()0 (1)
A generalized interpretation of nuclear spin relaxation data

is presented here in terms of a reorientational eigenmode analysisvhereYau(Q), M = —2, ..., 2, are the normalized spherical harmonics

based on the full and a reduced covariance matrix of spherical of rank 2;Yz(0,¢) = cv/2/3(3c08 @ — 1), Y211(6,¢) = 2¢ cos6 sind

harmonicsYau(60,¢) of different spin-relaxation-active interac-  exp(tig), Ya:2(6,¢) = c sir? 6 exp:2ig), wherec = +/15/(32).

tions (section 2). The covariance matrix, which is calculated  Thefull 5n x 5n covariance matrixP is then calculated as

from a MD simulation, is diagonalized yielding reorientational

eigenmodes (eigenvectors) and mode amplitudes (eigenvalues) P = |AYIAY| 2

that reflect concerted reorientational motions of the spin

interactions that cause relaxation. A characteristic intramolecularwhere |AYO= |Y(t)0— |Y[] with the horizontal bar indicating an

correlation time can be assigned to each mode that allowsensemble (or time) average over tieonformations of the trajectory,

direct calculation of nuclear spin relaxation parameters. Eigen- and [AY| is the complex-conjugate row vector YLl Thus, the
individual elements oP are of the form

(23) Levy, R. M.; Karplus, M.; Kushick, J.; Perahia, Mlacromolecules
1984 17, 1370-1374.

24) Hayward, S.; Kitao, A.; Hirata, F.; G&. J. Mol. Biol. 1993 234 —
12(()7_)121%/. ¢ 3 PiM,jM’ = Yau(€2) — YzM(Qi)DYzM'(Qj) - Y2M'(Qj)|
41§354)2A5mad9|, A.; Linssen, A. B.; Berendsen, H.Rroteins 1993 17, i,j=1,..nandM,M' =—2, ..., 2 @)
(26) Brischweiler, RJ. Am. Chem. S0d.992 114, 5341-5344. ) ) . . )
(27) Brischweiler, R.; Case, D. hys. Re. Lett. 1994 72, 940-943. Matrix P is hermitian P = P') and can be diagonalized,
(28) Brischweiler, R.J. Chem. Phys1995 102, 3396-3403.
(29) Abseher, A.; Nilges, MJ. Mol. Biol. 1998 279, 911-920. Plp= ,1p|pm p=1,..H (4)

(30) Horstink, L.; Abseher, R.; Nilges, M.; Hilbers, C. \&.. Mol. Biol.
1999 287, 569-577.

(31) Kitao A.; Hayward, S.; GoN. Proteins1998 33, 496-517. where|pCare normalized eigenvectors afyare the eigenvalues. The

(32) Kitao A.; Wagner, GProc. Natl. Acad. Sci. U.S.R200Q 97, 2064~ non-zero elements of eigenvectprepresent théaw(€2;) functions
2068. ) ) that are modulated in a correlated way. Eigenvectpistherefore
54‘(135) Lienin, S. F.; Brschweiler, RPhys. Re. Lett. 2000 84, 5439~ represent theigenmodes of reorientatidn rank 2 space wittmode

(34) Prompers, J. J.: Bsahweiler, R.J. Phys. Chem. 200Q 104, ampllt_udeslp._The modes_ are sorted throughogt this paper with respect
11416-11424. to their amplitudesl,, which are all non-negative real numbers, with

(35) Prompers, J. J.; Lienin, S. F.; Bahweiler, R. InBiocomputing: A1 being the smallest amplitude. The non-negativity is due to the fact
Proceedings of the 2001 Pacific Symposiukitman, R. B., Dunker, A. that the eigenvalues correspond to variances of spherical harmonics

K., Hunter, L., Lauderdale, K., Klein, T. E., Eds.; World Scientific:  zjong the eigenmodes.

Sir}ggg)%r%nfogrls; lepJEBSEfclheurer C. Brbweiler, R.J. Mol. Biol. 2001 For a molecular ensemble in an isotropic liquid, nuclear spin
305, 108&1(?97.7 T T B ' ' relaxation does not reflect the individual covariance element®, of
(37) Abragam, A.Principles of Nuclear MagnetisnClarendon Press: ~ but rather the partial traces (see, e.g., ref 4):

Oxford, 1961.

(38) Werbelow, L. G. InNuclear Magnetic Resonance Probes of 2
Molecular DynamicsTycko, R., Ed.; Kluwer: Dordrecht, The Netherlands, M. = [AY 0, (Q)IAY, 0, ()]
1994: pp 223-263. Ve, MRS M

(39) Wangsness, R. K.; Bloch, Phys. Re. 1953 89, 728-739. Bloch,
F. Phys. Re. 1956 102 104-135. 4

(40) Redfield, A. GIBM J. Res. De. 1957, 1, 19-31. Redfield, A. G. =% P, , )
Adv. Magn. Reson1965 1, 1—-32. ; Si—atl5 -4+l

(41) Brischweiler, R.; Wright, P. E1. Am. Chem. So@994 116, 8426— B
8427.

(42) Homonuclear dipolar relaxation with variable internuclear distances Which leads to theeduced nx n covariance matrixM. Alternatively,
will not be discussed here. M can be expressed as an ensemble average,
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M = B(t) (6)
whereB(t) = (A(t) — A®)(AT(t) — A'(t)) andA(t) is ann x 5 matrix
with elementsh; = Y4(€2i(t)) constructed from snapshots taken at time
t. M is hermitian and can be diagonalizéd|kO= A(kJk =1, ...,n,
where |k[are normalized reduced reorientational eigenmodesiand
are the (real) eigenvalues that reflect the mode amplitudes.

A correlation coefficient of reorientational dynamics between
interactionsi andj can be calculated from elements of matkix

Mij
= (M, M )1/2 @)

Correlation Times of Individual Modes. For each reorientational
mode |pOor |kOof the full and the reduced covariance matrix,

respectively, a characteristic motional time scale can be determined
by projecting each snapshot onto the eigenmode. For the full analysis j ()
(5n-dimensional case of eq 2) this is accomplished by evaluating the

scalar producty(t) = P|AY(t)[) whereas for the reduced analysis (

dimensional case of eq 6) an analogous expression can be derived using

the trace metriax(t) = Tr{ |k B(t)} = [k|B(t)|k] A time correlation

function can then be calculated that provides information about the

motional time scale(s) of the corresponding made(=

G0 =B (z + na()i

[pCor |KD:
8

J. Am. Chem. Soc., Vol. 123, No. 30, 2801

wheredS,, 0y = 0 andy 0, = 30, < 1 must be fulfilled.

The autocorrelation function of the spin interactjaan be expressed
as the overall tumbling factor&:, wherer. is the correlation time for
isotropic overall tumbling, times a weighted sum of intramolecular
correlation function<C,(t), that are normalize®,(0) = 1, belonging
to individual modes:

G =e "1+ oS (C.() — 1)} (15)

If Ci(t) is monoexponentialc:(t) = e ¥, as is found to be the case to

a good approximation in section 3, then the real part of the spectral
density functionJj(w) can be obtained analytically by cosine transfor-
mation:

00 27"C
= L G(t) coswt dt = ————+
1+ w2 2

25 -

T 1+wt

27,

(16)
1+ wztcz

wherer numbers all modesp(or k) and ' = tcti/(zc + ).

Equation 16 provides a formulation of the spectral density function
in terms of principal componen®S, of the covariance matrice

where the average extends over snapshots sampled during the timeyng u, respectively, and their correlation times For the reduced

intervalt = 0 — T — t. If the correlation function decays monoexpo-
nentially, the correlation time associated with modeLis determined

by?

f CO-C—Dd (9

"= c0) - c (t—

whereC,(t — T) symbolizes the plateau value Gf(t): C(t = T) =
|@ ()% Examples of correlation functions of dominant reorientational
modes will be shown in section 3.

S Order Parameters and Spectral DensitiesThe generalize®
order parameter of autorelaxation data of Lipari and Szabo be
expressed in terms of varlanceé of the spherical harmonics of

rank 2
4 2
1-8=73 &,
Sve2

Whereo2 = Yo Yon* O— [YouYay* [ Since matrixP contalnsoz
as dlagonal element& of axisj is

1-— 32—?

When starting from the reduced mathk (eq 5), further simplification
occurs since its diagonal elements are directly proportionaHoqf:

1—§2=%”M

For the full analysis involving matri®, the individual contribution
632@ of modep to 1 — is obtained by inserting the spectral
representation oP, P = Y ,A,|pp|, into eq 11:

0F,=—

Similarly, for the reduced analysis involving matiik the individual
contributiondS, of modek to 1 — § is

0=

(10)

5
(11)

u=5j

(12)

5j

Ap(IPPI)

u=5—4

(13)

KK, (14)

analysis eq 16 becomes identical to the Lip&zabo model-free
approach (see eq 1 of ref 5a) if only a single interaction=(1) is
considered. Generalization of eq 16 for anisotropic overall tumbling is
straightforward.

Calculation of NMR Relaxation Parameters. From the spectral
density function of eq 1671, T2, and NOE relaxation parameters can
be calculated in a straightforward manner according to standard
relaxation theory of Bloch, Wangsness, and Redfi¢fd.The longi-
tudinal relaxation rate T4 of a >N spin is given by

1 _ 1({4)[h}?
T1 20( 0) (27[) VNVHmNaﬁ{&](wN) + J(CUH wy) +
i

6J,(wy + wy)} + ZoN(B0) (o) (17)

whereu, is the permeability of vacuuntn is Planck’s constant;n, yn
are the gyromagnetic ratios 8N and*H, Ao is the chemical shielding
anisotropy constant, angy is the N-H distancewy andwy are the
Larmor frequencies (in radians per second) of ¥id and*H nuclei,
respectively. The corresponding expressions fos ahd the NOE are

e Lol a0 + 3y +
Jj(a)H —wy) T 6J(wy) + 6Jj(wH + oy} +
S0A(A0Y{43(0) + 3w} (18)

VH

NOE =1+ T, (19)

J

wherelj = (1/20)(uo/4m)2(h27)2y 2y A 3 63/(wn + wn) — J(wn —
wn)} is theH — 5N cross-relaxation rate constant.

The expression for the spectral density function of eq 16 is well-
suited for the adjustment of amplitudésand of correlation times;,
using a standard nonlinear least-squares fitting procedure (see, e.g.,
ref 43) to improve the agreement between experiment and theory as is
demonstrated in section 3. We call this approaebrientational

(43) Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T.
Numerical Recipes in QCambridge University Press: Cambridge, 1988.
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eigenmode dynami¢RED) analysis. Cross-correlated relaxation effects
can be incorporated similar to autocorrelated relaxation effects (see
Appendix).

Restrained Fitting for the Full RED Analysis. In the full RED
analysis, the number of modes may exceed the number of experimental
parameters and thus the fitting procedure becomes underdeter-
mined. For the sake of conceptual simplicity it is desirable if the mod-
ified matrix M’, which is calculated from a modified matriR’ =
>l Ipdp| using eq 5, wherdl, are the modified amplitudes, has
eigenvectorgk' [that remain essentially unchanged with respect to the
original eigenvectork] This is accomplished by restricting the fitting
to a subspace spanned by the relaxation-active motions. The subspace
is defined by the quantitie®y that represent the overlap between the
eigenvectorgplof P and the eigenvectoi&llof M:

Opk = Tr{ Trs(IpIp[) | KIIK(} (20)

whereTrs(|plp|) denotes the x n matrix constructed fronfpp| by
forming the partial traces over % 5 sub-blocks of matrixpp|. The
modified amplitudesl,’ of P can then be expressed as

Ay = Ap;opkxk (1)

wherex,, k=1, ...,n, are then fit parameters. Fox. = 1 it follows 1,

= J,. Due to the large number of correlation timgs(p = 1, ..., &) Figure 1. Loop region of the N-termingd-sheet of ubiquitin consisting
they were used in section 3 as fit parameters only for the largest Of @mino acids TheLelP-Thrs-Gly'%-Lys'™-Thr'? displayed using the
modes. VMD software#® The coordinates were taken from the conformation

Linking RED Modes to Fluctuations of Other Degrees of at 3.5 ns of the MD trajectory.
Freedom. Certain aspects of intramolecular protein motions can

sometimes be better visualized in terms of coordinates other than correlated. Obviously, in the absence of correlations between the two

internuclear vectors, for example dihedral angles or distances. Informa- ; .
. . - sets of parameters, NMR relaxation data do not allow one to gain further
tion on the nano- and subnanosecond time scale dynamics of these

degrees of freedom offers valuable insights into the motional behavior nsight into the fluctuation properties of the dihedral angles. Ma@rix

- . ) . ) can be diagonalized|q(0= A4/q0l g = 1, ..., 5 + m, where|qlare
of the protein and its parts. Such coordinates and their fluctuations . . 4 ’ . . _
may not be directly observable by experiment, but their dynamics normalized eigenmodes that describe combined motiohis¢€2) and

; } . } o; andq are the mode amplitudes. The adjustment of the amplitudes
properties may be coupled to internuclear vectors and their reorlenta-/I is in analogy to the full RED analvsis performed in a restrained
tions. We focus in the following on the treatment of dihedral angle 9 9y ysIS p

) } - manner. For the calculation of the overldpg between the eigenvectors
ggc\}yeehtlons, but the concept is applicable to other degrees of freedom lgrlof Q and the eigenvector&Tof M only the RED parts ofqllare

Analytical relationships between spin-relaxation-active motions and used, €. the ﬂrstrSeIciments of each vector, and the overlaps are
dihedral angle fluctuations in macromolecules can be derived under renormal{zgd such thgl,; Og = 1'. , .
favorable circumstancé8. If analytical relationships become too Af‘ef fitting of the _”i'°de ampl'tUdedq g 10 eXpe”m?mal
complicated, statistical approaches can be used in&tédd.the present relaxation data, a mo_d'f'feQ matr|>$ can be recons?ructed by using the
context a statistical approach is described that links the covariance spectral representatl_o@ = Dk Iqm‘ fronj which the modified
matrix P of the relaxation-active motions with the covariance matrix dihedral angle covariance s_ubmatrlx_ Qm)l() can be extracte_d -
of the dihedral angles of interest via a hybrid covariance matrix between analogy to_eq 7, the correlation coeﬁlue’rqai,aj_) of the fluctuations
the two sets of degrees of freedom. The full covariance m&trig between dlh_edral anglex; and o can be readily calculated, before
preferred here over the reduced matkilx since it involves a larger and after adjustments of mode amplitudes:
number of stochastic functions that reveal more specific correlations
to other degrees of freedom. r(oy,o) =
Let us considen relaxation-active interactions of rank 2 represented J (cov(o,a);covio,a);
by You(R2i) andm dihedral anglesy, representing for example a set of
backbonep,y dihedral angles. The total covariance matrix can then 3. Application to Loop Dynamics in Ubiquitin
be expressed as

Yam(€2i) functions and the considered dihedral angleare motionally

cov(a,a);

@

The RED analysis introduced in the previous section was
coV(Yop Yor) COV(Yop,00) applied to the loop region of the N-termirdsheet of the native
Q= cov(,Yy,)  COv(o,0) (22) form of the 76-amino-acid protein ubiquitin. This loop, which
is depicted in Figure 1, consists of the amino acid sequence
where covifau,Yaw) = P is the 51 x 5n covariance matrix of eq 2 and Thr7-.LeuB-Thr9-GIy1°-Lysll—_Th.r1.2 and connects the two N-
cov(@wo) = |Aahal is the m x m covariance matrix of the  terminal f-strands of ubiquitin. According to both NMR
mrdimensional dihedral angle vectphaO= |o(t)0— |aDextracted relaxation and MD studies it exhibits enhanced internal mobil-
from the MD trajectory. The dihedral angles (in units of radians) are ity.?>*64’RED analyses were carried out for both the reduced

expressed in an interval such thet) < [ — &, @ + ). n-dimensional case and the fulh&limensional case. Further-
The S x m matrix cov(Yawa) = |AYIA| = (cov(x,Yau))' (45) Humphrey, W.; Dalke, A.; Schulten, K. Mol. Graphics1996 14,
contains the covariance elements betweenYthg€Q;) functions and 33-38.

the dihedral angles,. It is essential that a sufficiently large number (46) Schneider, D. M.; Dellwo, M. J.; Wand, A. Biochemistry1992
of elements of coww,a) differ significantly from zero, i.e., that the 31, 3645-3652.

(47) Tjandra, N.; Feller, S. E.; Pastor, R. W.; BaxJAAm. Chem. Soc.
(44) LeMaster, D. MJ. Am. Chem. S0d.999 121, 1726-1742. 1995 117, 12562-12566.
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Figure 3. Reorientational mobilities of backbone-M¥ vectors of the
L T loop residues 712 of native ubiquitin expressed in terms oHﬁ2
Residue values and contributionéSf,k of reorientational modek = 1, ..., 6
derived from covariance matrikl (eqs 12 and 14). Panels a and b
Figure 2. 1N T; and T, relaxation times and*H}—N NOEs at show the reduced RED results before and after optimizing mode
600 and 400 MHz proton frequency of loop residuesl2 of ubi- amplitudes and correlation times to fit experimerAthl relaxation data.

quitin. Experimental relaxation parameters correspond to filled circles.

Rela_xation parameters calpulated using the reduced RED analysisby a least-squares superposition of the atoms of each snapshot
a_tp_plled to the 5 ns MD_ trajectory are s_h_own as open c_|rcles before on the ones of the “half-time” snapshot at 3.5 ns.

fitting, gnd as filled diamonds after fitting RED amplitudes and Residues THeLelf-Thr-Gly0 of the loop (Figure 1) form a
correlation times. B-turn during the whole trajectory, fluctuating between a type

| and a type IV f-turn as classified by the PROMOTIF

more, a combined full RED and dihedral angle fluctuation i ) i
analysis was performed. software?! This means that (i) the Catoms of residues Thr

Spin Relaxation Data.Ubiquitin backboné®N T; relaxation and Gy are always withi a 7 Aradius and (i) residues Léu

times and{ H} —15N heteronuclear NOEs collected at 400 and and ThP undergo _significant(p,zp fluctuations while not
600 MHz and!®N T, relaxation times measured at 600 MHz POPulating thea region ofg,y space. , . .
proton frequency were taken from Table 1 of the Supporting Reduced RED Analy5|s.A reduced reonentat_lonal eigen-
Information of Lienin et af All data were collected at 300 Kk, ~ Mode dynamics analysis was performed on the sbH\/ectors
and they are shown in Figure 2 as filled circles. According to Of residues #12, resulting in six eigenmodes for matrit
the 15N relaxation data, this loop is one of the most flexible (€ds 5 and 6). 1— § values derived from the diagonal
parts of ubiquitin apart from the C-termin@s*47From these elements of matriXM are plotted in Figure 3a, together with
data an overall rotational correlation time of 4.03 ns was  the individual contributioné#yk of eq 14 for all six modek =
determined, which was used for the calculation of relaxation 1, ..., 6. The two largest amplitude modes, modes 5 and 6,
parameters described in the following. Estimates of the statistical Predominantly affect residues 11 and 10, respectively, which
uncertainty of the experimental data (standard deviations) thatare the two residues in this loop that exhibit the highest mobility
had been obtained by repeating the experimentd-4té.5% during the MD simulation.
for Ty values at 400 and 600 MHz, 4% for NOEs at 400 MHz, The correlation times of loop motions along the reorientational
2.5% for NOEs at 600 MHz, and 2% fap values at 600 MHz. eigenmodes can be assessed from the autocorrelation functions
MD Simulation of Ubiquitin. An all-atom representation of ~ calculated for each mode using eq 8. The correlation functions
the protein was embedded in a cubic box including 2909 explicit C(t), which are plotted in Figure 4 for the two largest modes
water molecules, aha 6 nssimulation was carried out under k= 6 andk =5, decay in good approximation monoexponen-
periodic boundary conditions at a temperature of 300 K using tially. Fitting of Ci(t) to Cj'(t) = A exp(—t/z) yields correla-
the program CHARMM 249:50A total of 1000 snapshots with  tion timesze = 56 ps andrs = 38 ps. These values are in good
a time increment of 5 ps were analyzed from the final 5 ns of agreement with the valuag = 57 ps andrs = 30 ps found
the MD simulation. More details a_lbout the simulation can be (50) Mackerell, A. D., Jr.. Bashford, D.; Bellott, M., Dunbrack, R. L.,
found elsewheré!-3¢Prior to calculating the covariance matrices, Jr.: Evanseck, J. D.: Field, M. J.: Fischer, S.: Gao, J.. Guo, H.: Ha, S.:

overall translational and reorientational motions were removed Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.;
Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E., Ill.;
(48) Lienin, S. F.Anisotropic Dynamics in Molecular Systems Studied Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe,
by NMR RelaxationETH thesis no. 12871; ETH: 'Zich, 1998. M.; Wiérkiewicz-Kuczera, J.; Yin, D.; Karplus, M. Phys. Chem. B998
(49) Brooks, R. B.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; 102 3586-3616.
Swaminathan, S.; Karplus, M. Comput. Chenl983 4, 187-217. (51) Hutchinson, E. G.; Thornton, J. Nrotein Sci.1996 5, 212-220.
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Figure 4. Time correlation function®ACy(t) = Cy(t) — C«(t — T) of
the two largest amplitude reorientational eigenmodes 6 (panel &) and Sgigyre 5. Original (filled circles) and fitted (open circles) reorienta-

(pr_;\nel b) of_ cova_riance matrik_/l of loop residues #12 cal_cula_lted . tional eigenmode amplitudes (panel a) and correlation times (panel b)
using eq 8 (filled circles). Superimposed are monoexponential fits (solid ¢ the reduced RED analysis applied to the backborédNectors of
lines). the loop residues-712. The original correlation time of the smallest
and fastest mode 1 was set to zero, since it could not be accurately
using eq 9. For the smallest amplitude mode, mode 1, the noiseestimated. The error bars were determined by a Monte Carlo error
present in the time correlation function exceeds the initial value analysis consisting of 100 calculations.
C41(0), and therefore an effective correlation time could not be
accurately determined (see Figure S1 of the Supporting Infor- standard deviations calculated from a Monte Carlo error analysis
mation). consisting of 100 simulations with the experimental input
15\ Ty, To, and NOE relaxation parameters, shown as open pParameters varied randomly in accordance with their estimated
circles in Figure 2, were calculated for the loop residues using Uncertainties. More details on the Monte Carlo error analysis
the expression for the spectral density of eq 16 with the can be found in the Supporting Information (Figure S2). The
eigenmodes, amplitudes, and correlation times extracted fromlargest amplitude adjustments are observed for modes 4 and 6
the trajectory. Dipolar contributions were included using-atN ~ With the amplitude of mode 4 increased and the amplitude of
bond length ofryy = 1.02 A, and CSA contributions were ~mode 6 decreased. The best-fitting correlation times remain
included using an axially symmetri€N CSA tensor with the notably close to the correlation times originally extracted from
symmetry axis parallel to the NH vector and with an the MD trajectory. The contributionﬁ%k of individual modes

Mode k

asymmetryAc = —160 ppm. As is seen in Figure 2, the kto the order parameters—l&fare proportional tdx and are
calculated values do not satisfactorily reproduce the experi- depicted in Figure 3 for both the original (panel a) and adjusted
mental relaxation parameters. Hence, amplitutleand cor- amplitudes (panel b). After the fitting, residues 7, 8, 9, and 12
relation timesry of the six eigenmodes were adjusted to better have increased mobility as compared to the original MD
fit the experimental data. simulation, whereas residues 10 and 11 have decreased mobility.
The relaxation parameters corresponding to the best fits areThis leads to a more uniform distribution of mobility along the
shown in Figure 2 as filled diamonds. The weight@improves loop, as can be seen by comparing panels a and b of Figure 3.

by a factor of 8 compared to the original MD results, and the The fitting also causes a decrease in correlation of reorientational
agreement between the experimental NMR data and the fitedmotion between internuclear-\H vectorsi andj, which can
relaxation parameters, in particular at 600 MHz, becomes be expressed according to eq 7 in terms of correlation coef-
remarkably good. The experimental parameters at 400 MHz  ficients ry: before fitting all |r;j| are 0.39 or lower and after
display a somewhat different pattern than the 600 MHz fitting they are 0.25 or lower.

parameters that cannot be quantitatively reproduced by the fit.  The fitting procedure was repeated using a longetN\oond
Possible causes are experimental inaccuracies or additionalength ofryy = 1.04 A proposed recentf#:5% In this case, a
dynamics present in the experiment that is not present in thenew global minimum is found with significantly longer cor-
MD simulation. For the NOE data at 400 MHz, which have a relation times for modes 2 and 6 approaching the nanosecond
larger experimental uncertainty and therefore a lower weight time scale range. If the new correlation times are restricted to

during the fitting, a small systematic difference between arange that is within a factor of 5 or less of the original values,
experimental and fitted data remains. essentially the same minimum is obtained as for the case with

Figure 5 shows the original amplitudésand intramolecular (52) Ottiger, M.; Bax, AJ. Am. Chem. Sod.998 120, 12334-12341.
correlation timegy together with the optimized values and their (53) Case, D. AJ. Biomol. NMR1999 15, 95-102.
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Residue entational eigenmode amplitudes (panel a) and correlation times (panel
Figure 6. Experimental, back-calculated, and fitté® T;, T,, and b) of the full RED analysis. The error bars were determined by a Monte

NOE relaxation parameters for the full RED analysis. The same sym- Carlo error analysis.
bols were used as in Figure 2.

the full RED analysis are lower than those for the reduced RED
the N—H bond length set to 1.02 A, but with a systematic offset analysis.

in the amplitudes and correlation times (see Figures S3 and S4 Tne pest fit results of the full RED analysis are shown in

of the Supporting Information). Since lengthening of the Figure 6. Again, good agreement between theory and experiment
bond reduces the dipolar coupling strength, the fitted mode is chieved. The results are similar to the reduced RED resullts,
amplitudesiy are decreased while the correlation timesre where the differences are mainly caused by the distinct treatment
increased. of correlation times in the two methods. Figure 7 shows the
Full RED Analysis. A full 5n-dimensional RED analysis was  original amplitudes and intramolecular correlation times together
performed on the same six-NH vectors of residues 712, with the optimized values. All 30 amplitudes are scaled using

resulting in 30 eigenmodes for matrix (eq 2). As described  six fit parameters according to eq 21. The amplitudes of the
in section 2, 1— qz values derived fronP are identical to largest modes are hardly changed, while the smaller modes
those derived fronM, but the individual contributionéqzyp are generally have slightly increased amplitudes. The correlation
now distributed over 30 modes instead of six modes, each with times of mode 28 and especially of mode 27, which are the
its own correlation timep. A reduction of the number of fitting ~ slowest among all modes, are adjusted to much shorter values.
parameters was achieved by using the restrained fitting proce-The adjusted correlation time of mode 29 remains very close
dure of eq 21, which involves only six independent fit param- to its original value. The adjusted correlation time of mode 30
eters to scale the 30 amplitudés Since it is not feasible to  is about 3 ns, which makes this mode essentially NMR
adjust all 30 correlation times, the correlation times of only the relaxation inactive. This mode, which possesses a non-
four largest amplitude modes were optimized. These modes haveexponential correlation function, is apparently caused by a rare
the longest correlation times according to the MD simulation. event during the simulation and is not reflected in the experi-
The correlation times of modes 4@6 were kept at their initial mental NMR spin relaxation parameters.
values, while the correlation times of the smallest 15 modes, The full RED analysis yields for this loop results that are
which contribute only little to the spin relaxation behavior, were comparable to the ones obtained from the reduced RED analysis.
assumed to be very shorty(< 10 ps). However, when correlating vector orientation fluctuations with
The relaxation parameters calculated from the eigenmodes,dihedral angle fluctuations, the full RED approach yields better
amplitudes, and correlation times of the full RED analysis are results, presumably because full RED probes the reorientational
shown in Figure 6, together with the experimental data. Note fluctuations in a larger variety of different functional forms than
that the relaxation parameters calculated prior to fitting differ reduced RED and allows the occurrence of stronger correlation
somewhat from those in Figure 2 due to differences in €effects, as is demonstrated in the following section.
correlation times: for the reduced analysis all calculated Correlating Relaxation with Dihedral Angle Fluctuations.
correlation times are shorter than 60 ps, while for the full A combined full RED and dihedral angle fluctuation analysis
analysis the four largest modes have correlation times longerwas performed on the six-\H vectors of residues-712. The
than 60 ps, i.e., 270, 255, 80, and 152 ps for modes3®7 30 modes of the full RED analysis were correlated with the 12
respectively. As a consequence, the back-calculated NOEs forbackbone dihedral angles = ¢7,97, ..., 12,312, Which results
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in 42 eigenmodes for the hybrid covariance ma@ixf eq 22.

The 1— qz values for the N-H vectors derived fronQ are
identical to those obtained from matriv in the reduced
analysis. The individual contributioraiﬁ‘?q are distributed over

42 modes, each with its individual correlation time. The
restrained fitting procedure uses six independent fit parameters
to adjust all 42 amplitudes. The correlation times of the five
largest modes were individually adjusted during the fitting
procedure, and the correlation times of the 27 smallest modes
were set to small values{ < 10 ps). ‘ : : ; :

The results are very similar to the full RED analysis (see 7 8 9 10 11 12
Figures S5 and S6 of the Supporting Information). The largest Residue
difference is found for the fitted; andT, values for residue 9, b ; ;
which are slightly smaller in the combined analysis. For the
fitted mode amplitudes and intramolecular correlation times, the
same trends are observed as for the full RED analysis, with the
adjusted correlation time of the largest mode, mode 42, being
again NMR relaxation inactiver{z; = 3—4 ns).

After fitting, for both the reduced and the full RED analyses,
none of the relaxation-active modes (with the exception of mode , : : : :
30 in the full RED case) exhibits a correlation time exceeding 5 0
100 ps. In both cases the longest adjusted correlation time is 0 E ; ; E :
about 80 ps. In contrast, in the combined analysis mode 38 has 7 8 9 10 11 12
an adjusted correlation time of 200 ps. In the full RED subspace Residue
this mode mainly affects residue 9, which might explain the Figure 8. Root-mean-square fluctuatiomsof the ¢ (filled circles)

differences in the fittedT; and T, values observed for this and y (open circles) backbone dihedral angles of the loop residues
residue. 7—12 of native ubiquitin. Panel a shows the values for the original

matrix Q (eq 22), while panel b shows the results after optimizing the
mode amplitudes and correlation times using the combined full RED
and ¢,y fluctuation analysis.

Q

O (deg)

O (deg)

From the adjusted eigenvalugg an adjusted matriQ)’ =
> Aq'|qlg| was determined, which contains the adjustedx12
12 covariance submatrix cayo)’ describing the backbongy
dihedral angle fluctuations and their correlations (see eq 22).
Figure 8 shows thep,y root-mean-square fluctuations of
residues 712 before and after fitting. The fluctuations of
residues 7, 8, 9, and 12 are slightly increased compared to th
original MD simulation, a trend that is similar to the one
observed for 1— %2 in the reduced RED analysis (Figure 3).
The amplitudes ofy fluctuations remain largely unchanged.

Dihedral angle correlation coefficients were determined  The short-range character of the spin interactions responsible
according to eq 23 before and after mode amplitude adjustmentsfor NMR relaxation prevents straightforward identification and
The results are summarized in Table 1. Significant correlations characterization of correlated protein dynamics from experi-
between yi_1,¢; pairs, which are often found in regular mental data. The presented RED analysis offers a general
secondary structural elemeftsare not observed. Before fitting, ~ solution by combining experimental relaxation data with cova-
there are positive correlations involvings, 9, 10, Y11 (all riance information extracted from a MD simulation. The
y,y correlations), and negative correlations involvipg -, covariance matrix is determined from rank 2 spherical harmonics
@10, Y10, Y11 (all @,y correlations). The highest correlation is lattice functionsYay of the nuclear spin interactions that cause
observed betweempg andys, which remains one of the highest  spin relaxation. For proteins that can be studied by liquid-state
correlations also after fitting. Except for the correlation between NMR techniques, the NMR relaxation theory of Bloch, Wang-
@10andy, all other correlations were diminished by the fitting sness, and Redfielt*® adequately describes nuclear spin
(Table 1), which suggests that the original trajectory tends to relaxation processes. Since this theory is a second-order

perturbation theory it involves only second-order time correla-

overemphasize such correlations. Most affected by the fitting
are the positive correlations amongdihedral angles, while
the negative correlations betweerandy dihedral angles are
Sess influenced.

4., Conclusion

Table 1. Dominant Correlations between Backbone Dihedral tion functions of theYsy functions of the spin interactions.
Angles Therefore, the covariance matrix of thig, functions represents
pair of backbone original correlation  correlation coefficients a complete description of the spatial aspects of protein dynamics
dihedralangles  coefficientsr® r after adjustments that are relevant for nuclear spin relaxation. Third- and higher-
QY7 —0.43 —-0.32 order motional correlations have a negligible influence on
Ps—Po 0.76 0.52 experimentally observable spin relaxation parameters.
%2:1’/;12 8'45& 8'28 The reorientational covariance matrix is analyzed in terms
$r0-P10 —0.44 —0.54 of its principal components, which are the reorientational
@10~ Y11 —0.52 —0.45 eigenmodes and mode amplitudes obtained by matrix diago-
Y10~ P1u 0.50 0.33 nalization. It was found that the eigenmodes naturally separate

a Correlation coefficients of backbone dihedral angles with> motions occurring on slower and faster time scales, with the

0.4 according to eq 23, calculated from the original covariance matrix Slowest modes corresponding to the largest amplitude motions.
Q of eq 22.°Correlation coefficients after optimizing the mode Thus, the RED modes have a physical meaning in terms of
amplitudes and correlation times using the combined full RED and
@,y fluctuation analysis. (54) Levy, R. M.; Karplus, MBiopolymers1979 18, 2465.
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uncoupled reorientational motional modes in analogy to normal eters and the fluctuation properties of these degrees of freedom,
modes, quasiharmonic modes, and essential dynamics. The times was illustrated here for backbone dihedral angles of ubiquitin.
scale information is used together with the eigenmode and In this way, the MD-derived statistical relationship between
amplitude information to back-calculate relaxation parameters. backbone ¢, fluctuations and reorientational motions of
RED analysis requires only a single MD trajectory and not internuclear dipolar vectors combined with experimental relax-
multiple trajectories that separately sample slow and fast ation data provides a more accurate characterization of dihedral

motions. angle motions on the subnanosecond time scale.
Back-calculation of spin relaxation parameters is notably _ o )
simple, since the covariance matrix explicitly compriSeerder Acknowledgment. J.J.P. is a recipient of a Human Frontier

parameters and thus no conversion of lattice fluctuation Science Program postdoctoral fellowship. This work was
amplitudes into$? order parameters is necessary. This is in supported by NSF Grant MCB-9904875.
contrast to other collective models of protein motions based on
guasiharmonic analysis and essential dynamics. Mode ampli-
tudes of the original covariance matrix and correlation times  Cross-Correlated Relaxation. Cross-correlated relaxation
extracted from the MD trajectory can be readily adjusted by a effects between different interactions can be addressed in
least-squares fitting procedure to improve agreement with analogy to autocorrelated relaxation. For the full RED analysis
experimental relaxation data. involving matrix P, the contribution of mode to the “decor-
RED analysis is related to recent approaches for the descrip-relation” of the cross-correlation function between vectansd
tion of collective reorientational dynamics based on covariance j is
matrices of internuclear vectors expressed in Cartesian coor-
dinates®®—36 These approaches are mathematically equivalent 4 4
to the RED analysis if the spherical harmonics of rank 2 are 0S = — A,(IPT)s—4105-atu (A1)
replaced by spherical harmonics of rankYly() to describe the S ¢=
orientations of internuclear vectors. . o ) )
Since only covariance information of the lattice functions of While for the reduced RED analysis involving matfix the
rank 2 is used, the RED approach is a generalization of the individual contribution of mode is
Lipari—Szabo model-free approdcto higher dimensions by dor
incorporating effects of concerted motions of different spin 63%k=_/1k(|k[ml|)ij (A2)
interactions on relaxation parameters measured for multiple ’ 5
nuclei. In fact, the diagonal elements of covariance maifix
correspond to 1- £ while off-diagonal elements represent
cross-correlation order parameters. The RED analysis reconcile ) >
model-free analysis with quasiharmonic and essential dynamicscorresponding expressions fo.
concepts of protein dynamics for the interpretation of nuclear
spin relaxation data. It is particularly suitable for the dynamic

Appendix

The cross-correlated spectral density functl(w) that cor-
sresponds to eq 16 is obtained by replacirig%r by the
&, from egs AL and A2.

Supporting Information Available: Six figures with cor-

characterization of mobile parts of globular proteins such as relation functions of reduqed RED analysis and histograms C.’f
Monte Carlo error analysis, results of reduced RED analysis

loop regions and side chains involving a larger number of soft with r = 1.04 A, detailed results of the combined full RED

degrees of freedom and whose dynamic parametrization in terms . - - o .
of analytical motional models is hard. and ¢,y fluctuation analysis (PDF). This material is available

The RED analysis can be coupled to other degrees of freedom,free of charge via the Internet at http://pubs.acs.org.

providing an interface between nuclear spin relaxation param- JA0107226



