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Abstract: An approach is presented for the interpretation of heteronuclear NMR spin relaxation data in mobile
protein parts in terms of reorientational eigenmode dynamics. The method is based on the covariance matrix
of the spatial functions of the nuclear spin interactions that cause relaxation expressed as spherical harmonics
of rank 2. The approach was applied to characterize the dynamics of a loop region of ubiquitin. The covariance
matrix was determined from a conformational ensemble generated by a 5 nsmolecular dynamics simulation.
It was found that the time correlation functions of the dominant eigenmodes decay in good approximation
with a single correlation time. From the reorientational eigenmodes, their eigenvalues, and correlation times,
NMR relaxation data were calculated in accordance with Bloch-Wangsness-Redfield relaxation theory and
directly compared with experimental15N relaxation parameters. Using a fitting procedure, agreement between
calculated and experimental data was improved significantly by adjusting eigenvalues and correlation times of
the dominant modes. The presented procedure provides detailed information on correlated reorientational
dynamics of flexible parts in globular proteins. The covariance matrix was linked to the covariance matrix of
backbone dihedral angle fluctuations, allowing one to study the motional behavior of these degrees of freedom
on nano- and subnanosecond time scales.

1. Introduction

To perform their function, proteins often exhibit a significant
degree of flexibility and dynamics, which may occur on a wide
range of time scales from femtoseconds to seconds. Since
flexible parts of globular proteins, such as loop regions and side
chains, are often involved in mediating specific protein-protein
and protein-DNA interactions, detailed descriptions of the
dynamics of these parts and their changes upon establishment
of specific contacts should help to obtain a better understanding
of biologically important molecular processes. Atoms in bio-
molecules do not move independently, but rather in a collective
fashion. Therefore, a description that takes motional correlation
effects into account is desirable.

Much of what is known about rapid biomolecular dynamics
stems from nuclear magnetic resonance (NMR) spin relaxation
data1,2 and molecular dynamics (MD) computer simulations.3

The two methods are complementary:4 spin relaxation experi-
mentally monitors local reorientational motions of internuclear
vectors and their correlation times while MD provides a most
detailed theoretical view of protein dynamics.

Most commonly, heteronuclear spin relaxation data of pro-
teins are interpreted on a residue-by-residue basis using the
model-free approach,5-8 spectral density mapping,9 or analytical

motional models.10,11The results of such analyses can be directly
compared with relaxation parameters calculated from a MD
simulation.12-18 More integrated combinations of MD and NMR
relaxation use analytical motional models derived from the
trajectory followed by fitting of the model parameters to
experimental data,19-21 the computation of NMR relaxation
properties from harmonic and quasiharmonic analyses,13,22-30

and the jumping-among-minima concept.31,32
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Collective descriptions of purely reorientational intramolecu-
lar motions have recently been developed33-35 for a compre-
hensive and yet compact description of correlated dynamics that
affect NMR spin relaxation parameters. They rely on the
covariance matrices of internuclear vector fluctuations estimated
from MD simulations. The methods were used to address
contributions of purely reorientational motions of N-H and
C-H bonds to the conformational entropy of folded and partially
folded protein states in the presence of motional correlations.34,36

Nuclear spin relaxation parameters, such asT1, T2, and NOE
of 15N and13C spins, are determined by the fluctuations of the
angular parts of the lattice functions of the spin-relaxation-active
interactions, in particular the magnetic dipole-dipole interaction
to directly bonded protons and the chemical shielding anisotropy
(CSA) interaction.37 These lattice functions are commonly
represented in terms of spherical harmonics of rank 2,Y2M(θ,æ),
whereθ,æ are the polar angles describing the orientation of an
internuclear vector in a molecule-fixed frame37 (a non-axially-
symmetric CSA interaction can be represented as the sum of
two orthogonal axially symmetric interactions38). Since relax-
ation theory by Bloch, Wangsness, and Redfield39,40is a second-
order perturbation theory, spatial aspects of relaxation properties
are completely determined by variance and covariance properties
of the Y2M(θ,æ) lattice functions.41,42

A generalized interpretation of nuclear spin relaxation data
is presented here in terms of a reorientational eigenmode analysis
based on the full and a reduced covariance matrix of spherical
harmonicsY2M(θ,æ) of different spin-relaxation-active interac-
tions (section 2). The covariance matrix, which is calculated
from a MD simulation, is diagonalized yielding reorientational
eigenmodes (eigenvectors) and mode amplitudes (eigenvalues)
that reflect concerted reorientational motions of the spin
interactions that cause relaxation. A characteristic intramolecular
correlation time can be assigned to each mode that allows
direct calculation of nuclear spin relaxation parameters. Eigen-

mode amplitudes and correlation times are then adjusted to
improve agreement between the experimental and the computed
relaxation data. The method is applied in section 3 to study the
dynamics of a loop region of the N-terminalâ-hairpin of
ubiquitin that exhibits increased flexibility.

2. Theory and Methods

General.We consider a molecular dynamics trajectory of a protein
of total lengthT consisting ofN conformations (snapshots) sampled
with a time increment∆t. We are interested inn dipolar spin-spin
interactions, such as15N-1H and13C-1H interactions or any other rank
2 interaction, determined by the orientations of their principal axes.37

A covariance matrix is constructed from the trajectory using the
following procedure. First, the six overall motional degrees of freedom
are removed by reorienting and translating each conformation by using
a least-squares superposition of atomic coordinates with respect to a
reference frame, which is for example the conformation at “half-time”
N∆t/2. For each conformation, sampled at timet, the principal axis
directionsΩj(t) ) (θj(t),æj(t)), j ) 1, ...,n, of then interactions define
the 5n-dimensional complex column vector:

whereY2M(Ω), M ) -2, ..., 2, are the normalized spherical harmonics
of rank 2;Y20(θ,æ) ) cx2/3(3cos2 θ - 1), Y2,(1(θ,æ) ) 2c cosθ sinθ
exp((iæ), Y2(2(θ,æ) ) c sin2 θ exp((2iæ), wherec ) x15/(32π).

The full 5n × 5n coVariance matrixP is then calculated as

where |∆Y〉 ) |Y(t)〉 - |Yh〉, with the horizontal bar indicating an
ensemble (or time) average over theN conformations of the trajectory,
and 〈∆Y| is the complex-conjugate row vector to|∆Y〉. Thus, the
individual elements ofP are of the form

Matrix P is hermitian (P ) P†) and can be diagonalized,

where|p〉 are normalized eigenvectors andλp are the eigenvalues. The
non-zero elements of eigenvector|p〉 represent theY2M(Ωj) functions
that are modulated in a correlated way. Eigenvectors|p〉 therefore
represent theeigenmodes of reorientationin rank 2 space withmode
amplitudesλp. The modes are sorted throughout this paper with respect
to their amplitudesλp, which are all non-negative real numbers, with
λ1 being the smallest amplitude. The non-negativity is due to the fact
that the eigenvalues correspond to variances of spherical harmonics
along the eigenmodes.

For a molecular ensemble in an isotropic liquid, nuclear spin
relaxation does not reflect the individual covariance elements ofP,
but rather the partial traces (see, e.g., ref 4):

which leads to thereduced n× n coVariance matrixM. Alternatively,
M can be expressed as an ensemble average,
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|Y(t)〉 )

|Y2,-2(Ω1(t)), Y2,-1(Ω1(t)), Y20(Ω1(t)), Y21(Ω1(t)), Y22(Ω1(t)), ...,

Y2,-2(Ωn(t)), Y2,-1(Ωn(t)), Y20(Ωn(t)), Y21(Ωn(t)), Y22(Ωn(t))〉 (1)

P ) |∆Y〉〈∆Y| (2)

PiM,jM′ ) |Y2M(Ωi) - Y2M(Ωi)〈Y2M′(Ωj) - Y2M′(Ωj)|
i, j ) 1, ...,n andM, M′ ) -2, ..., 2 (3)

P|p〉 ) λp|p〉, p ) 1, ..., 5n (4)

Mij ) ∑
M)-2

2

|∆Y2M(Ωi)〉〈∆Y2M(Ωj)|

) ∑
l)0

4

P5i-4+l,5j-4+l (5)
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whereB(t) ) (A(t) - A(t))(A†(t) - A†(t)) andA(t) is ann × 5 matrix
with elementsAij ) Y2j(Ωi(t)) constructed from snapshots taken at time
t. M is hermitian and can be diagonalized,M|k〉 ) λk|k〉, k ) 1, ...,n,
where |k〉 are normalized reduced reorientational eigenmodes andλk

are the (real) eigenvalues that reflect the mode amplitudes.
A correlation coefficient of reorientational dynamics between

interactionsi and j can be calculated from elements of matrixM,

Correlation Times of Individual Modes. For each reorientational
mode |p〉 or |k〉 of the full and the reduced covariance matrix,
respectively, a characteristic motional time scale can be determined
by projecting each snapshot onto the eigenmode. For the full analysis
(5n-dimensional case of eq 2) this is accomplished by evaluating the
scalar productap(t) ) 〈p|∆Y(t)〉, whereas for the reduced analysis (n-
dimensional case of eq 6) an analogous expression can be derived using
the trace metricak(t) ) Tr{|k〉〈k|B(t)} ) 〈k|B(t)|k〉. A time correlation
function can then be calculated that provides information about the
motional time scale(s) of the corresponding mode|r〉 () |p〉 or |k〉):

where the average extends over snapshots sampled during the time
intervalτ ) 0 f T - t. If the correlation function decays monoexpo-
nentially, the correlation timeτr associated with mode|r〉 is determined
by5

whereCr(t f T) symbolizes the plateau value ofCr(t): Cr(t f T) =
|〈ar(τ)〉τ|2. Examples of correlation functions of dominant reorientational
modes will be shown in section 3.

S2 Order Parameters and Spectral Densities.The generalizedS2

order parameter of autorelaxation data of Lipari and Szabo5 can be
expressed in terms of variancesσY2M

2 of the spherical harmonics of
rank 241

whereσY2M

2 ) 〈Y2MY2M* 〉 - 〈Y2M〉〈Y2M* 〉. Since matrixP containsσY2M

2

as diagonal elements,S2 of axis j is

When starting from the reduced matrixM (eq 5), further simplification
occurs since its diagonal elements are directly proportional to 1- Sj

2:

For the full analysis involving matrixP, the individual contribution
δSj,p

2 of mode p to 1 - Sj
2 is obtained by inserting the spectral

representation ofP, P ) ∑pλp|p〉〈p|, into eq 11:

Similarly, for the reduced analysis involving matrixM the individual
contributionδSj,k

2 of modek to 1 - Sj
2 is

whereδSj,p
2 ,δSj,k

2 g 0 and∑pδSj,p
2 ) ∑kδSj,k

2 e 1 must be fulfilled.

The autocorrelation function of the spin interactionj can be expressed
as the overall tumbling factor e-t/τc, whereτc is the correlation time for
isotropic overall tumbling, times a weighted sum of intramolecular
correlation functionsCr(t), that are normalizedCr(0) ) 1, belonging
to individual modesr:

If Cr(t) is monoexponential,Cr(t) ) e-t/τr, as is found to be the case to
a good approximation in section 3, then the real part of the spectral
density functionJj(ω) can be obtained analytically by cosine transfor-
mation:

wherer numbers all modes (p or k) andτr′ ) τcτr/(τc + τr).

Equation 16 provides a formulation of the spectral density function
in terms of principal componentsδSj,r

2 of the covariance matricesP
and M, respectively, and their correlation timesτr. For the reduced
analysis eq 16 becomes identical to the Lipari-Szabo model-free
approach (see eq 1 of ref 5a) if only a single interaction (n ) 1) is
considered. Generalization of eq 16 for anisotropic overall tumbling is
straightforward.

Calculation of NMR Relaxation Parameters.From the spectral
density function of eq 16,T1, T2, and NOE relaxation parameters can
be calculated in a straightforward manner according to standard
relaxation theory of Bloch, Wangsness, and Redfield.39,40 The longi-
tudinal relaxation rate 1/T1 of a 15N spin is given by

whereµ0 is the permeability of vacuum,h is Planck’s constant,γN, γH

are the gyromagnetic ratios of15N and1H, ∆σ is the chemical shielding
anisotropy constant, andrNH is the N-H distance.ωN andωH are the
Larmor frequencies (in radians per second) of the15N and1H nuclei,
respectively. The corresponding expressions for 1/T2 and the NOE are

whereΓj ) (1/20)(µ0/4π)2(h/2π)2γN
2 γH

2 〈rNH
-3〉2{6Jj(ωH + ωN) - Jj(ωH -

ωN)} is the1H f 15N cross-relaxation rate constant.

The expression for the spectral density function of eq 16 is well-
suited for the adjustment of amplitudesλr and of correlation timesτr

using a standard nonlinear least-squares fitting procedure (see, e.g.,
ref 43) to improve the agreement between experiment and theory as is
demonstrated in section 3. We call this approachreorientational

(43) Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T.
Numerical Recipes in C; Cambridge University Press: Cambridge, 1988.

M ) B(t) (6)

rij )
Mij

(MiiMjj)
1/2

(7)

Cr(t) ) 〈ar*(τ + t)ar(τ)〉τ (8)

τr = 1
Cr(0) - Cr(t f T)∫0

T
(Cr(t) - Cr(t f T)) dt (9)

1 - S2 )
4π

5
∑

M)-2

2

σY2M

2 (10)

1 - Sj
2 )

4π

5
∑

u)5j-4

5j

Puu (11)

1 - Sj
2 ) 4π

5
Mjj (12)

δSj,p
2 )

4π

5
∑

u)5j-4

5j

λp(|p〉〈p|)uu (13)

δSj,k
2 ) 4π

5
λk(|k〉〈k|)jj (14)

Cj(t) ) e-t/τc{1 + ∑
r

δSj,r
2 (Cr(t) - 1)} (15)

Jj(ω) ) ∫-∞

∞
Cj(t) cosωt dt )

2τc

1 + ω2τc
2

+

∑
r

δSj,r
2 ( 2τr′

1 + ω2τr′
2

-
2τc

1 + ω2τc
2) (16)

1
T1,j

) 1
20(µ0

4π)2( h
2π)2

γN
2 γH

2 〈rNH
-3〉2{3Jj(ωN) + Jj(ωH - ωN) +

6Jj(ωH + ωN)} + 1
15

ωN
2(∆σ)2Jj(ωN) (17)

1
T2,j

) 1
40(µ0

4π)2( h
2π)2

γN
2 γH

2 〈rNH
-3〉2{4Jj(0) + 3Jj(ωN) +

Jj(ωH - ωN) + 6J(ωH) + 6Jj(ωH + ωN)} +
1
90

ωN
2(∆σ)2{4Jj(0) + 3Jj(ωN)} (18)

NOEj ) 1 +
γH

γN
T1,jΓj (19)
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eigenmode dynamics(RED) analysis. Cross-correlated relaxation effects
can be incorporated similar to autocorrelated relaxation effects (see
Appendix).

Restrained Fitting for the Full RED Analysis. In the full RED
analysis, the number of modes may exceed the number of experimental
parameters and thus the fitting procedure becomes underdeter-
mined. For the sake of conceptual simplicity it is desirable if the mod-
ified matrix M′, which is calculated from a modified matrixP′ )
∑pλp′|p〉〈p| using eq 5, whereλp′ are the modified amplitudes, has
eigenvectors|k′〉 that remain essentially unchanged with respect to the
original eigenvectors|k〉. This is accomplished by restricting the fitting
to a subspace spanned by the relaxation-active motions. The subspace
is defined by the quantitiesOpk that represent the overlap between the
eigenvectors|p〉 of P and the eigenvectors|k〉 of M:

whereTr5(|p〉〈p|) denotes then × n matrix constructed from|p〉〈p| by
forming the partial traces over 5× 5 sub-blocks of matrix|p〉〈p|. The
modified amplitudesλp′ of P can then be expressed as

wherexk, k ) 1, ...,n, are then fit parameters. Forxk ) 1 it follows λp′
) λp. Due to the large number of correlation timesτp (p ) 1, ..., 5n),
they were used in section 3 as fit parameters only for the largest
modes.

Linking RED Modes to Fluctuations of Other Degrees of
Freedom. Certain aspects of intramolecular protein motions can
sometimes be better visualized in terms of coordinates other than
internuclear vectors, for example dihedral angles or distances. Informa-
tion on the nano- and subnanosecond time scale dynamics of these
degrees of freedom offers valuable insights into the motional behavior
of the protein and its parts. Such coordinates and their fluctuations
may not be directly observable by experiment, but their dynamics
properties may be coupled to internuclear vectors and their reorienta-
tions. We focus in the following on the treatment of dihedral angle
fluctuations, but the concept is applicable to other degrees of freedom
as well.

Analytical relationships between spin-relaxation-active motions and
dihedral angle fluctuations in macromolecules can be derived under
favorable circumstances.19 If analytical relationships become too
complicated, statistical approaches can be used instead.28,44In the present
context a statistical approach is described that links the covariance
matrix P of the relaxation-active motions with the covariance matrix
of the dihedral angles of interest via a hybrid covariance matrix between
the two sets of degrees of freedom. The full covariance matrixP is
preferred here over the reduced matrixM, since it involves a larger
number of stochastic functions that reveal more specific correlations
to other degrees of freedom.

Let us considern relaxation-active interactions of rank 2 represented
by Y2M(Ωi) andm dihedral anglesRj, representing for example a set of
backboneæ,ψ dihedral angles. The total covariance matrix can then
be expressed as

where cov(Y2M,Y2M) ) P is the 5n × 5n covariance matrix of eq 2 and

cov(R,R) ) |∆R〉〈∆R| is the m × m covariance matrix of the
m-dimensional dihedral angle vector|∆R〉 ) |R(t)〉 - |Rj〉 extracted
from the MD trajectory. The dihedral angles (in units of radians) are
expressed in an interval such thatR(t) ∈ [Rj - π, Rj + π].

The 5n × m matrix cov(Y2M,R) ) |∆Y〉〈∆R| ) (cov(R,Y2M))†

contains the covariance elements between theY2M(Ωi) functions and
the dihedral anglesRj. It is essential that a sufficiently large number
of elements of cov(Y2M,R) differ significantly from zero, i.e., that the

Y2M(Ωi) functions and the considered dihedral anglesRj are motionally
correlated. Obviously, in the absence of correlations between the two
sets of parameters, NMR relaxation data do not allow one to gain further
insight into the fluctuation properties of the dihedral angles. MatrixQ
can be diagonalized,Q|q〉 ) λq|q〉, q ) 1, ..., 5n + m, where|q〉 are
normalized eigenmodes that describe combined motions ofY2M(Ωi) and
Rj andλq are the mode amplitudes. The adjustment of the amplitudes
λq is in analogy to the full RED analysis performed in a restrained
manner. For the calculation of the overlapsOqk between the eigenvectors
|q〉 of Q and the eigenvectors|k〉 of M only the RED parts of|q〉 are
used, i.e., the first 5n elements of each vector, and the overlaps are
renormalized such that∑k)1

n Oqk ) 1.
After fitting of the mode amplitudesλq f λq′ to experimental

relaxation data, a modifiedQ matrix can be reconstructed by using the
spectral representationQ′ ) ∑qλq′|q〉〈q| from which the modified
dihedral angle covariance submatrix cov(R,R)′ can be extracted. In
analogy to eq 7, the correlation coefficientr(Ri,Rj) of the fluctuations
between dihedral anglesRi and Rj can be readily calculated, before
and after adjustments of mode amplitudes:

3. Application to Loop Dynamics in Ubiquitin

The RED analysis introduced in the previous section was
applied to the loop region of the N-terminalâ-sheet of the native
form of the 76-amino-acid protein ubiquitin. This loop, which
is depicted in Figure 1, consists of the amino acid sequence
Thr7-Leu8-Thr9-Gly10-Lys11-Thr12 and connects the two N-
terminal â-strands of ubiquitin. According to both NMR
relaxation and MD studies it exhibits enhanced internal mobil-
ity.21,46,47RED analyses were carried out for both the reduced
n-dimensional case and the full 5n-dimensional case. Further-

(44) LeMaster, D. M.J. Am. Chem. Soc.1999, 121, 1726-1742.

(45) Humphrey, W.; Dalke, A.; Schulten, K.J. Mol. Graphics1996, 14,
33-38.

(46) Schneider, D. M.; Dellwo, M. J.; Wand, A. J.Biochemistry1992,
31, 3645-3652.

(47) Tjandra, N.; Feller, S. E.; Pastor, R. W.; Bax A.J. Am. Chem. Soc.
1995, 117, 12562-12566.

Opk ) Tr{Tr5(|p〉〈p|)|k〉〈k|} (20)

λp′ ) λp∑
k)1

n

Opkxk (21)

Q ) [cov(Y2M,Y2M) cov(Y2M,R)
cov(R,Y2M) cov(R,R) ] (22)

Figure 1. Loop region of the N-terminalâ-sheet of ubiquitin consisting
of amino acids Thr7-Leu8-Thr9-Gly10-Lys11-Thr12 displayed using the
VMD software.45 The coordinates were taken from the conformation
at 3.5 ns of the MD trajectory.

r(Ri,Rj) )
cov(R,R)ij

(cov(R,R)iicov(R,R)jj)
1/2

(23)
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more, a combined full RED and dihedral angle fluctuation
analysis was performed.

Spin Relaxation Data.Ubiquitin backbone15N T1 relaxation
times and{1H}-15N heteronuclear NOEs collected at 400 and
600 MHz and15N T2 relaxation times measured at 600 MHz
proton frequency were taken from Table 1 of the Supporting
Information of Lienin et al.21 All data were collected at 300 K,
and they are shown in Figure 2 as filled circles. According to
the 15N relaxation data, this loop is one of the most flexible
parts of ubiquitin apart from the C-terminus.21,46,47From these
data an overall rotational correlation timeτc of 4.03 ns was
determined, which was used for the calculation of relaxation
parameters described in the following. Estimates of the statistical
uncertainty of the experimental data (standard deviations) that
had been obtained by repeating the experiments are21,48 1.5%
for T1 values at 400 and 600 MHz, 4% for NOEs at 400 MHz,
2.5% for NOEs at 600 MHz, and 2% forT2 values at 600 MHz.

MD Simulation of Ubiquitin. An all-atom representation of
the protein was embedded in a cubic box including 2909 explicit
water molecules, and a 6 nssimulation was carried out under
periodic boundary conditions at a temperature of 300 K using
the program CHARMM 24.49,50A total of 1000 snapshots with
a time increment of 5 ps were analyzed from the final 5 ns of
the MD simulation. More details about the simulation can be
found elsewhere.21,36Prior to calculating the covariance matrices,
overall translational and reorientational motions were removed

by a least-squares superposition of the atoms of each snapshot
on the ones of the “half-time” snapshot at 3.5 ns.

Residues Thr7-Leu8-Thr9-Gly10 of the loop (Figure 1) form a
â-turn during the whole trajectory, fluctuating between a type
I and a type IV â-turn as classified by the PROMOTIF
software.51 This means that (i) the CR atoms of residues Thr7

and Gly10 are always within a 7 Åradius and (ii) residues Leu8

and Thr9 undergo significantæ,ψ fluctuations while not
populating theR region ofæ,ψ space.

Reduced RED Analysis.A reduced reorientational eigen-
mode dynamics analysis was performed on the six N-H vectors
of residues 7-12, resulting in six eigenmodes for matrixM
(eqs 5 and 6). 1- Sj

2 values derived from the diagonal
elements of matrixM are plotted in Figure 3a, together with
the individual contributionsδSj,k

2 of eq 14 for all six modesk )
1, ..., 6. The two largest amplitude modes, modes 5 and 6,
predominantly affect residues 11 and 10, respectively, which
are the two residues in this loop that exhibit the highest mobility
during the MD simulation.

The correlation times of loop motions along the reorientational
eigenmodes can be assessed from the autocorrelation functions
calculated for each mode using eq 8. The correlation functions
Ck(t), which are plotted in Figure 4 for the two largest modes
k ) 6 andk ) 5, decay in good approximation monoexponen-
tially. Fitting of Ck(t) to Ck

fit(t) ) A exp(-t/τk) yields correla-
tion timesτ6 ) 56 ps andτ5 ) 38 ps. These values are in good
agreement with the valuesτ6 ) 57 ps andτ5 ) 30 ps found

(48) Lienin, S. F.Anisotropic Dynamics in Molecular Systems Studied
by NMR Relaxation; ETH thesis no. 12871; ETH: Zu¨rich, 1998.

(49) Brooks, R. B.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.;
Swaminathan, S.; Karplus, M.J. Comput. Chem.1983, 4, 187-217.

(50) MacKerell, A. D., Jr.; Bashford, D.; Bellott, M.; Dunbrack, R. L.,
Jr.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.;
Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.;
Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E., III.;
Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe,
M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M.J. Phys. Chem. B1998,
102, 3586-3616.

(51) Hutchinson, E. G.; Thornton, J. M.Protein Sci.1996, 5, 212-220.

Figure 2. 15N T1 and T2 relaxation times and{1H}-15N NOEs at
600 and 400 MHz proton frequency of loop residues 7-12 of ubi-
quitin. Experimental relaxation parameters correspond to filled circles.
Relaxation parameters calculated using the reduced RED analysis
applied to the 5 ns MD trajectory are shown as open circles before
fitting, and as filled diamonds after fitting RED amplitudes and
correlation times.

Figure 3. Reorientational mobilities of backbone N-H vectors of the
loop residues 7-12 of native ubiquitin expressed in terms of 1- Sj

2

values and contributionsδSj,k
2 of reorientational modesk ) 1, ..., 6

derived from covariance matrixM (eqs 12 and 14). Panels a and b
show the reduced RED results before and after optimizing mode
amplitudes and correlation times to fit experimental15N relaxation data.
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using eq 9. For the smallest amplitude mode, mode 1, the noise
present in the time correlation function exceeds the initial value
C1(0), and therefore an effective correlation time could not be
accurately determined (see Figure S1 of the Supporting Infor-
mation).

15N T1, T2, and NOE relaxation parameters, shown as open
circles in Figure 2, were calculated for the loop residues using
the expression for the spectral density of eq 16 with the
eigenmodes, amplitudes, and correlation times extracted from
the trajectory. Dipolar contributions were included using a N-H
bond length ofrNH ) 1.02 Å, and CSA contributions were
included using an axially symmetric15N CSA tensor with the
symmetry axis parallel to the N-H vector and with an
asymmetry∆σ ) -160 ppm. As is seen in Figure 2, the
calculated values do not satisfactorily reproduce the experi-
mental relaxation parameters. Hence, amplitudesλk and cor-
relation timesτk of the six eigenmodes were adjusted to better
fit the experimental data.

The relaxation parameters corresponding to the best fits are
shown in Figure 2 as filled diamonds. The weightedø2 improves
by a factor of 8 compared to the original MD results, and the
agreement between the experimental NMR data and the fitted
relaxation parameters, in particular at 600 MHz, becomes
remarkably good. The experimentalT1 parameters at 400 MHz
display a somewhat different pattern than the 600 MHz
parameters that cannot be quantitatively reproduced by the fit.
Possible causes are experimental inaccuracies or additional
dynamics present in the experiment that is not present in the
MD simulation. For the NOE data at 400 MHz, which have a
larger experimental uncertainty and therefore a lower weight
during the fitting, a small systematic difference between
experimental and fitted data remains.

Figure 5 shows the original amplitudesλk and intramolecular
correlation timesτk together with the optimized values and their

standard deviations calculated from a Monte Carlo error analysis
consisting of 100 simulations with the experimental input
parameters varied randomly in accordance with their estimated
uncertainties. More details on the Monte Carlo error analysis
can be found in the Supporting Information (Figure S2). The
largest amplitude adjustments are observed for modes 4 and 6
with the amplitude of mode 4 increased and the amplitude of
mode 6 decreased. The best-fitting correlation times remain
notably close to the correlation times originally extracted from
the MD trajectory. The contributionsδSj,k

2 of individual modes
k to the order parameters 1- Sj

2 are proportional toλk and are
depicted in Figure 3 for both the original (panel a) and adjusted
amplitudes (panel b). After the fitting, residues 7, 8, 9, and 12
have increased mobility as compared to the original MD
simulation, whereas residues 10 and 11 have decreased mobility.
This leads to a more uniform distribution of mobility along the
loop, as can be seen by comparing panels a and b of Figure 3.
The fitting also causes a decrease in correlation of reorientational
motion between internuclear N-H vectorsi and j, which can
be expressed according to eq 7 in terms of correlation coef-
ficients rij: before fitting all |rij| are 0.39 or lower and after
fitting they are 0.25 or lower.

The fitting procedure was repeated using a longer N-H bond
length of rNH ) 1.04 Å proposed recently.52,53 In this case, a
new global minimum is found with significantly longer cor-
relation times for modes 2 and 6 approaching the nanosecond
time scale range. If the new correlation times are restricted to
a range that is within a factor of 5 or less of the original values,
essentially the same minimum is obtained as for the case with

(52) Ottiger, M.; Bax, A.J. Am. Chem. Soc.1998, 120, 12334-12341.
(53) Case, D. A.J. Biomol. NMR1999, 15, 95-102.

Figure 4. Time correlation functions∆Ck(t) ) Ck(t) - Ck(t f T) of
the two largest amplitude reorientational eigenmodes 6 (panel a) and 5
(panel b) of covariance matrixM of loop residues 7-12 calculated
using eq 8 (filled circles). Superimposed are monoexponential fits (solid
lines).

Figure 5. Original (filled circles) and fitted (open circles) reorienta-
tional eigenmode amplitudes (panel a) and correlation times (panel b)
of the reduced RED analysis applied to the backbone N-H vectors of
the loop residues 7-12. The original correlation time of the smallest
and fastest mode 1 was set to zero, since it could not be accurately
estimated. The error bars were determined by a Monte Carlo error
analysis consisting of 100 calculations.
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the N-H bond length set to 1.02 Å, but with a systematic offset
in the amplitudes and correlation times (see Figures S3 and S4
of the Supporting Information). Since lengthening of the N-H
bond reduces the dipolar coupling strength, the fitted mode
amplitudesλk are decreased while the correlation timesτk are
increased.

Full RED Analysis. A full 5n-dimensional RED analysis was
performed on the same six N-H vectors of residues 7-12,
resulting in 30 eigenmodes for matrixP (eq 2). As described
in section 2, 1- Sj

2 values derived fromP are identical to
those derived fromM, but the individual contributionsδSj,p

2 are
now distributed over 30 modes instead of six modes, each with
its own correlation timeτp. A reduction of the number of fitting
parameters was achieved by using the restrained fitting proce-
dure of eq 21, which involves only six independent fit param-
eters to scale the 30 amplitudesλp. Since it is not feasible to
adjust all 30 correlation times, the correlation times of only the
four largest amplitude modes were optimized. These modes have
the longest correlation times according to the MD simulation.
The correlation times of modes 16-26 were kept at their initial
values, while the correlation times of the smallest 15 modes,
which contribute only little to the spin relaxation behavior, were
assumed to be very short (τp , 10 ps).

The relaxation parameters calculated from the eigenmodes,
amplitudes, and correlation times of the full RED analysis are
shown in Figure 6, together with the experimental data. Note
that the relaxation parameters calculated prior to fitting differ
somewhat from those in Figure 2 due to differences in
correlation times: for the reduced analysis all calculated
correlation times are shorter than 60 ps, while for the full
analysis the four largest modes have correlation times longer
than 60 ps, i.e., 270, 255, 80, and 152 ps for modes 27-30,
respectively. As a consequence, the back-calculated NOEs for

the full RED analysis are lower than those for the reduced RED
analysis.

The best fit results of the full RED analysis are shown in
Figure 6. Again, good agreement between theory and experiment
is achieved. The results are similar to the reduced RED results,
where the differences are mainly caused by the distinct treatment
of correlation times in the two methods. Figure 7 shows the
original amplitudes and intramolecular correlation times together
with the optimized values. All 30 amplitudes are scaled using
six fit parameters according to eq 21. The amplitudes of the
largest modes are hardly changed, while the smaller modes
generally have slightly increased amplitudes. The correlation
times of mode 28 and especially of mode 27, which are the
slowest among all modes, are adjusted to much shorter values.
The adjusted correlation time of mode 29 remains very close
to its original value. The adjusted correlation time of mode 30
is about 3 ns, which makes this mode essentially NMR
relaxation inactive. This mode, which possesses a non-
exponential correlation function, is apparently caused by a rare
event during the simulation and is not reflected in the experi-
mental NMR spin relaxation parameters.

The full RED analysis yields for this loop results that are
comparable to the ones obtained from the reduced RED analysis.
However, when correlating vector orientation fluctuations with
dihedral angle fluctuations, the full RED approach yields better
results, presumably because full RED probes the reorientational
fluctuations in a larger variety of different functional forms than
reduced RED and allows the occurrence of stronger correlation
effects, as is demonstrated in the following section.

Correlating Relaxation with Dihedral Angle Fluctuations.
A combined full RED and dihedral angle fluctuation analysis
was performed on the six N-H vectors of residues 7-12. The
30 modes of the full RED analysis were correlated with the 12
backbone dihedral anglesRi ) æ7,ψ7, ...,æ12,ψ12, which results

Figure 6. Experimental, back-calculated, and fitted15N T1, T2, and
NOE relaxation parameters for the full RED analysis. The same sym-
bols were used as in Figure 2.

Figure 7. Original (filled circles) and adjusted (open circles) reori-
entational eigenmode amplitudes (panel a) and correlation times (panel
b) of the full RED analysis. The error bars were determined by a Monte
Carlo error analysis.
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in 42 eigenmodes for the hybrid covariance matrixQ of eq 22.
The 1 - Sj

2 values for the N-H vectors derived fromQ are
identical to those obtained from matrixM in the reduced
analysis. The individual contributionsδSj,q

2 are distributed over
42 modes, each with its individual correlation time. The
restrained fitting procedure uses six independent fit parameters
to adjust all 42 amplitudes. The correlation times of the five
largest modes were individually adjusted during the fitting
procedure, and the correlation times of the 27 smallest modes
were set to small values (τq , 10 ps).

The results are very similar to the full RED analysis (see
Figures S5 and S6 of the Supporting Information). The largest
difference is found for the fittedT1 andT2 values for residue 9,
which are slightly smaller in the combined analysis. For the
fitted mode amplitudes and intramolecular correlation times, the
same trends are observed as for the full RED analysis, with the
adjusted correlation time of the largest mode, mode 42, being
again NMR relaxation inactive (τ42 ) 3-4 ns).

After fitting, for both the reduced and the full RED analyses,
none of the relaxation-active modes (with the exception of mode
30 in the full RED case) exhibits a correlation time exceeding
100 ps. In both cases the longest adjusted correlation time is
about 80 ps. In contrast, in the combined analysis mode 38 has
an adjusted correlation time of 200 ps. In the full RED subspace
this mode mainly affects residue 9, which might explain the
differences in the fittedT1 and T2 values observed for this
residue.

From the adjusted eigenvaluesλq′ an adjusted matrixQ′ )
∑qλq′|q〉〈q| was determined, which contains the adjusted 12×
12 covariance submatrix cov(R,R)′ describing the backboneæ,ψ
dihedral angle fluctuations and their correlations (see eq 22).
Figure 8 shows theæ,ψ root-mean-square fluctuations of
residues 7-12 before and after fitting. Theæ fluctuations of
residues 7, 8, 9, and 12 are slightly increased compared to the
original MD simulation, a trend that is similar to the one
observed for 1- Sj

2 in the reduced RED analysis (Figure 3).
The amplitudes ofψ fluctuations remain largely unchanged.

Dihedral angle correlation coefficients were determined
according to eq 23 before and after mode amplitude adjustments.
The results are summarized in Table 1. Significant correlations
between ψi-1,æi pairs, which are often found in regular
secondary structural elements,54 are not observed. Before fitting,
there are positive correlations involvingψ8, ψ9, ψ10, ψ11 (all
ψ,ψ correlations), and negative correlations involvingæ7, ψ7,
æ10, ψ10, ψ11 (all æ,ψ correlations). The highest correlation is
observed betweenψ8 andψ9, which remains one of the highest
correlations also after fitting. Except for the correlation between
æ10 andψ10, all other correlations were diminished by the fitting
(Table 1), which suggests that the original trajectory tends to

overemphasize such correlations. Most affected by the fitting
are the positive correlations amongψ dihedral angles, while
the negative correlations betweenæ andψ dihedral angles are
less influenced.

4. Conclusion

The short-range character of the spin interactions responsible
for NMR relaxation prevents straightforward identification and
characterization of correlated protein dynamics from experi-
mental data. The presented RED analysis offers a general
solution by combining experimental relaxation data with cova-
riance information extracted from a MD simulation. The
covariance matrix is determined from rank 2 spherical harmonics
lattice functionsY2M of the nuclear spin interactions that cause
spin relaxation. For proteins that can be studied by liquid-state
NMR techniques, the NMR relaxation theory of Bloch, Wang-
sness, and Redfield39,40 adequately describes nuclear spin
relaxation processes. Since this theory is a second-order
perturbation theory it involves only second-order time correla-
tion functions of theY2M functions of the spin interactions.
Therefore, the covariance matrix of theY2M functions represents
a complete description of the spatial aspects of protein dynamics
that are relevant for nuclear spin relaxation. Third- and higher-
order motional correlations have a negligible influence on
experimentally observable spin relaxation parameters.

The reorientational covariance matrix is analyzed in terms
of its principal components, which are the reorientational
eigenmodes and mode amplitudes obtained by matrix diago-
nalization. It was found that the eigenmodes naturally separate
motions occurring on slower and faster time scales, with the
slowest modes corresponding to the largest amplitude motions.
Thus, the RED modes have a physical meaning in terms of

(54) Levy, R. M.; Karplus, M.Biopolymers1979, 18, 2465.

Table 1. Dominant Correlations between Backbone Dihedral
Angles

pair of backbone
dihedral angles

original correlation
coefficientsra

correlation coefficients
r after adjustmentsb

æ7-ψ7 -0.43 -0.32
ψ8-ψ9 0.76 0.52
ψ8-ψ10 0.53 0.30
ψ9-ψ10 0.41 0.20
æ10-ψ10 -0.44 -0.54
æ10-ψ11 -0.52 -0.45
ψ10-ψ11 0.50 0.33

a Correlation coefficients of backbone dihedral angles with|r| g
0.4 according to eq 23, calculated from the original covariance matrix
Q of eq 22.b Correlation coefficients after optimizing the mode
amplitudes and correlation times using the combined full RED and
æ,ψ fluctuation analysis.

Figure 8. Root-mean-square fluctuationsσ of the æ (filled circles)
and ψ (open circles) backbone dihedral angles of the loop residues
7-12 of native ubiquitin. Panel a shows the values for the original
matrix Q (eq 22), while panel b shows the results after optimizing the
mode amplitudes and correlation times using the combined full RED
andæ,ψ fluctuation analysis.
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uncoupled reorientational motional modes in analogy to normal
modes, quasiharmonic modes, and essential dynamics. The time
scale information is used together with the eigenmode and
amplitude information to back-calculate relaxation parameters.
RED analysis requires only a single MD trajectory and not
multiple trajectories that separately sample slow and fast
motions.

Back-calculation of spin relaxation parameters is notably
simple, since the covariance matrix explicitly comprisesS2 order
parameters and thus no conversion of lattice fluctuation
amplitudes intoS2 order parameters is necessary. This is in
contrast to other collective models of protein motions based on
quasiharmonic analysis and essential dynamics. Mode ampli-
tudes of the original covariance matrix and correlation times
extracted from the MD trajectory can be readily adjusted by a
least-squares fitting procedure to improve agreement with
experimental relaxation data.

RED analysis is related to recent approaches for the descrip-
tion of collective reorientational dynamics based on covariance
matrices of internuclear vectors expressed in Cartesian coor-
dinates.33-36 These approaches are mathematically equivalent
to the RED analysis if the spherical harmonics of rank 2 are
replaced by spherical harmonics of rank 1 (Y1M) to describe the
orientations of internuclear vectors.

Since only covariance information of the lattice functions of
rank 2 is used, the RED approach is a generalization of the
Lipari-Szabo model-free approach5 to higher dimensions by
incorporating effects of concerted motions of different spin
interactions on relaxation parameters measured for multiple
nuclei. In fact, the diagonal elements of covariance matrixM
correspond to 1- S2 while off-diagonal elements represent
cross-correlation order parameters. The RED analysis reconciles
model-free analysis with quasiharmonic and essential dynamics
concepts of protein dynamics for the interpretation of nuclear
spin relaxation data. It is particularly suitable for the dynamic
characterization of mobile parts of globular proteins such as
loop regions and side chains involving a larger number of soft
degrees of freedom and whose dynamic parametrization in terms
of analytical motional models is hard.

The RED analysis can be coupled to other degrees of freedom,
providing an interface between nuclear spin relaxation param-

eters and the fluctuation properties of these degrees of freedom,
as was illustrated here for backbone dihedral angles of ubiquitin.
In this way, the MD-derived statistical relationship between
backboneæ,ψ fluctuations and reorientational motions of
internuclear dipolar vectors combined with experimental relax-
ation data provides a more accurate characterization of dihedral
angle motions on the subnanosecond time scale.
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Appendix

Cross-Correlated Relaxation.Cross-correlated relaxation
effects between different interactions can be addressed in
analogy to autocorrelated relaxation. For the full RED analysis
involving matrix P, the contribution of modep to the “decor-
relation” of the cross-correlation function between vectorsi and
j is

while for the reduced RED analysis involving matrixM the
individual contribution of modek is

The cross-correlated spectral density functionJij(ω) that cor-
responds to eq 16 is obtained by replacingδSj,r

2 by the
corresponding expressions forδSij ,r

2 from eqs A1 and A2.

Supporting Information Available: Six figures with cor-
relation functions of reduced RED analysis and histograms of
Monte Carlo error analysis, results of reduced RED analysis
with rNH ) 1.04 Å, detailed results of the combined full RED
andæ,ψ fluctuation analysis (PDF). This material is available
free of charge via the Internet at http://pubs.acs.org.
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